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We ignore the discrete aspect of matter and we consider that 
properties such as density, viscosity, modulus of elasticity, etc., 
assigned to a midpoint continuous are continuous functions 
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Continuum mechanics review-Vector Algebra

In mechanics of continuous media, motion and the associated physical quantities are 
described in Euclidean space R3 (physical space) with which a three-dimensional vector 
space E3 is associated. 

The elements of R3 and E3 are called the points and vectors, respectively. 

The scalars, vectors, and tensors that describe the physical quantities are also attached to a 
space (typically R3) and form what are called scalar, vector, or tensor fields.



Continuum mechanics review-Vector Algebra

A vector space is defined uniquely from the properties of operations on its elements and assumes 
the existence of an arbitrary field (typically the field of real numbers R) whose elements are called 
scalars. The vector space E3 is then the set of elements denoted u, v, w , . . . such that:

for every u, v, w ∈ E3 and a, b ∈ R. 

·
for every u, v, w  ∈ E3 and α, β ∈ R. 

By providing E3 with a scalar product, to be able to calculate lengths and angles, 
it takes the name Euclidean space. The scalar product associates 
with every pair of vectors u, v ∈ E3 a scalar denoted u.v with the following properties:

Note: numbers refer to the equations
in the book by Botsis & Deville



Continuum mechanics review-Vector Algebra

The scalar product is consequently an application of E3 x E3 in R that is linear with respect to each of 
its arguments. It is also called a positive definite bilinear form (See (1.2) in the previous slide). 

The definition of the vector norm u, denoted            is given by the relation:

·

·

The vector u is called a unit vector when = 1, and two vectors u and v are orthogonal if and only if u.v = 0.

Every vector in E3 can be decomposed uniquely according to a basis formed of three linearly independent vectors of
E3. The choice of a basis is arbitrary but generally one uses the canonical basis (e1, e2, e3) defined by:

The basis is called orthogonal when the basis vectors are not unit vectors but are still orthogonal.



Continuum mechanics review-Vector Algebra

Physical quantities in continuum mechanics

Scalars: Quantities for which only one value can be associated. For example, the mass density of a material. We 
denote it ρ and it has for  SI  units kg/m3 or dimensions ML−3 where M is the mass and L a length. This density 
is practically constant and, in addition, there is no direction associated with its value. 

·

·

Vectors: quantities have not only a value but also a direction. 
A force of one Newton is that which, applied to a point, gives it an acceleration of 1 m s−2 per kg. 
Since this force has a direction, it is a vector. In a given coordinate system, this vector is specified by its components. 
Going from one set of axes to another, the vector remains invariant and only the components of the vector 
change by a transformation rule.

Tensors: We introduce the concept of a tensor in a simplistic way as follows. Consider, a stress is a force 
per unit surface:   (a) force is a vector and (b) an element of a surface is also a vector (must specify both 
its size and its orientation).
If f describes the force vector and s the normal vector of the surface S, then we might think that the 
stress T could be expressed by f /s. But, as the division of two vectors is an undefined operation, we get 
around the difficulty by saying that given s, we can find f by multiplying s by a new entity T such that:
This mathematical object is a tensor which yields the stress at a point and is a tensor 
of order 2. It is associated with two spatial directions and can be represented by a 
matrix with two indices, each index corresponding to one direction in Euclidean space. 
It is thus an entity with nine components. 



Continuum mechanics review-Orthogonal Transformation
In the physical Euclidean space R3, let there be a Cartesian orthonormal co- ordinate system (O, e1, e2, e3), 
that we denote also as Oxi (i = 1, 2, 3), with origin at O and the unit vectors ei (i = 1, 2, 3) directed along 
the axes Oxi (fig. 1.3). 

Another system O xi
’ (i = 1, 2, 3) with unit vectors ei

’ defines a Cartesian coordinate system with the same origin O. The 
direction cosines of the  axes xi

’ with respect to the axes xi, denoted by cpi, are given by the scalar products of the basis 
vectors.

Similarly, the direction cosines of the first system with respect to the 
second are given by:

Two Cartesian coordinate systems 
with the same origin



Continuum mechanics review-Orthogonal Transformation

. 

Let P be a point with coordinates xi in the first system and xi
’ in the second. 

From equation (1.6), the coordinates xi
’ are related to those of xi and xi

’

Using equation (1.6)

Or

For the inverse 
transformation we have:

Or

Two Cartesian 
coordinate systems



Summation convention
We can suppress the symbol Σ by adopting, from here on, the Einstein summation convention for 
repeated indices to write for the coordinates of point P and agree to the following: 

When an index appears twice in a product, a sum with respect to that index is implied by taking 
successively all its possible values (in this case, i = 1, 2, 3). In this way equations (1.9) and (1.11),

are written in the compact form: 



Summation convention
Illustrations of summation convention

(the index i is fixed and has a value among 1, 2, 3. It’s called free index. 
We sum over the repeated index). 

(No free index. We sum over the two repeated indices i and j =1, 2, 3)

ui designated the set of the 31 quantities 
u1, u2, u3 (3 for space and 1 for the free index). 
Lij signifies the set of the 32 quantities 
L11, L12, L13, L21, L22, L23, L31, L32, L33
(3 for space and 2 for the free indices). 
Lii, we have 30 = 1 quantity.



Summation convention and Kronecker delta
Illustrations of summation convention

Note that the index over which we sum is a dummy index; 
we can change the notation of this index without changing the significance of the sum:

A dummy index does not appear
more than twice in a product.
Using this property and

we can wrirte:

from which: The coefficients in the last equations should be equal to one
when i=q and 0 for i not q. This is also true for the other equation.

We can introduce the Kronecker delta to reflect such a property.

(1.12)

(1)(2)

(3)

Very important in operations with complex equations 



Summation convention, Kronecker delta

we can wrirte the orthogonality condition:

and

Orthogonality conditions: From the Kronecker delta 

The components           form an orthogonal matrix         such that:

with

((+) indicates a direct rotation and (-) a reflection)

The Kronecker delta can be used to change
the index of a component: 
(very useful property)

Note also the following relations usefull in
deriving relations in mechanics:

; ik
ij kl

jl

A   
A

δ δ∂
=

∂



Scalars
Recall: In mechanics of continuous media, we work with scalars, vectors, and tensors that describe the physical 
quantities that are also attached to a space (typically R3) and form what are called scalar, vector, or tensor fields.
What is important in the context of continuous media is how we can describe these quantities in different 
coordinate systems. 

Consider a point P in a continuous medium and a real value continuous function F (P) at P. 
If the value F (P) does not depend on the coordinate system, then F is called a scalar function, or scalar, 
or a tensor of order 0. This is the case, for example, for temperature, pressure, kinetic energy, etc. 

Suppose that P has coordinates xi and if F (P) has a value f (xi), 
the change of coordinate systems:   

for the scalar F (P) leads to 

Note that the values remains the same but the
form of the function can varie in the new coordinate system. 

Two Cartesian 
coordinate systems



Vectors
Let v = P Q be a vector having its origin at point P and its extremity at point Q (fig. 1.4). This vector has a direction 
and three components vi. The vector itself is independent of the coordinate system.

In a Cartesian coordinate system the          are Independent of the coordinates of P. 

Here xi, yi are the coordinates of the points P and Q in the first coordinate system and 
xi

’, yi
’ in the second. The components of v in the two systems are written as:

(1.19) 
(1.20) 

(1.20), (1.21) 

(1.19) (1.21)

The object v, characterized by the three components vi in a
Cartesian coordinate system, is a vector or a tensor of order 1 if
its components are transformed according to this rule during a
coordinate system change that is an orthogonal transformation
satisfying (1.16).(1.22) 

Vector in two Cartesian 
coordinate systems



Vectors
Using index notation we can express the algebra of vectors and their components:

With a being a scalar we can write, using (1.22):

the vector addition results in a vector with components:

or in vector notation : 

Scalar product of two vectors b: 

In symbolic form : 

In index form : 

The scalar product of two vectors is independent of 
an orthogonal change of coordinates.

Using (1.20), we have:

With         and          being the norms of the 
two vectors we have :

is the angle between the two vectors).

For a single vector: 



Permutation symbol and vector product

The permutation symbol is defined as:

or

1

23

+-



Permutation symbol and vector product

In an orthonormal basis of R3, the vector product of two vectors w = u × v, 
sometimes denoted u ∧ v, is defined by the equality:

The norm of the vector is given by the equality 
(with angle between u and v):

With the Kronecker symbol

and the permutation symbol we have
an important relation used to easily demonstrate vector identities
and express vector products in index form.  



Permutation symbol and vector product

Example 1.1



Permutation symbol and vector product
Example 1.2: Verify the following identity: 

(1.36)

(1.30)



Tensor Algebra: definition of a tensor
Definition of a tensor of order 2: 

Let E3 be the Euclidean vector space of vectors associated with R3, and L a linear mapping on E3

that transforms a vector to another:

such that: 

If L transforms the two arbitrary vectors as

and has the properties 

where u1 and u2 are two arbitrary vectors of E3 and α ∈ R, then we say that L is a linear transformation.
It is also a tensor of order 2, or simply, a tensor.

The unit tensor I and the zero tensor O are defined by the relations u = Iu and 0 = Ou.

(1.38)



Tensor Algebra: definition of a second order tensor

For a vector u, the vector v is given by:

If we express the components of v as:

(1.39)

which is the transformation of the two vectors 
in index form. In a matrix from, it is.

(1.40)

(1.41)

(1.42)

or (1.43)

The components of the tensor are:

From (1.42) we see that the columns 
of the matrix are the components of vectors
and depend on the coordinate system. However,
the operator does not depend on the base vector.  

matrix associated
with the tensor

determinant associated
with the tensor



Tensor Algebra: Dyadic (or tensor) product of two vectors

The tensor product or dyadic product a ⊗ b of two vectors a and b is defined as the tensor which, 
for any vector v defines the following transformation : 

For every vector v and w and for α, β ∈ R, we have

(1.48)

The definition of the dyadic product and the last relation
demonstrates that the product is a tensor. Its components are:

(1.42)

The matrix form of a dyadic product is: 



Tensor Algebra: Dyadic (or tensor) product of two vectors

For two vectors u and v, 

Note that :

(1.43)

With the help of (1.43) we obtain: 

and 

Note two important relations:

(1.43)



Tensor Algebra: transformation rule for Cartesian tensor
The representation in the Cartesian coordinate system xi of the linear operator L, 

which is invariant, is given by its components Lij (1.42) 

In the coordinate system x’i the components of   are expressed as   

We can easily evaluate the relation between the components Lij and L’ij.    Using (1.20), 

Recalling,                                                                       (1.21)

In matrix notation, equation (1.52) is written as:

(1.52)becomes

(1.53)



Tensor Algebra: transformation rule for Cartesian tensor
Definition of second order tensor: a matrix [L] with nine components corresponds to a 2nd

order tensor if its components are transformed according to (1.53): 

during a coordinate change that obeys (1.20):

and that is an orthogonal transformation according to (1.16):

(1.53)

(1.20)

(1.16)

These transformation rules guarantee 
the invariance of L with respect to 
the choice of coordinates.

By generalizing these transformation rules, we can define a tensor of order n. 
By definition, T is a tensor of order n if, during a coordinate transformation, 
its components aretransformed according to the rule: For a tensor of order 1 (vector) 

and order 2 we easily see:

(1.55)



Tensor Algebra

Important rules of nth order tensors
Multiplication by a Scalar: the multiplication of a tensor of order n by a scalar is carried out 
by multiplying each component of the tensor by the scalar. The result is a tensor of order n.

Linear Combination: the linear combination of two tensors of order n is by linear combination of the corresponding 
components. A tensor of the same order is obtained.

Zero Tensor: it is the tensor for which all the components are equal to zero.

Equivalent Tensors: when the components of two tensors of the same order are equal term by term in a 
coordinate system, then they are equal in every other system; the tensors are equivalent. 
Consequently, if a tensor relation is verified in one coordinate system, it is true in all coordinate systems.

Exterior Product of Tensors: Consider    Ai1 ···in and  Bj1 ···jm as the respective components of a tensor of order
n and a tensor of order m in a coordinate system. The 3n+m quantities obtained by:
C i1 ···inj1 ···jm = Ai1 ···in Bj1 ···jm form a tensor C of order n + m. 
An example, is the dyadic product of two vectors (i.e. tensors of order 1) yields a tensor of order 2.



Tensor Algebra

Important rules of n order tensors
Tensor Contraction: Consider a tensor A of order n whose components in a coordinate system are Ai1 ···in .  
The contraction consists of setting equal two indices of the tensor, i.e. the jth and the kth with j and k ≤ n, and
summing over these indices (j, k = 1, 2, 3) to form a tensor of order n-2 thus having 3n−2 components. 
We say that this tensor is obtained by contraction of the indices j and k. 
Example, Lii is the only contraction possible of Lij which is a scalar (tensor of order 0).

Consider two tensors S and T of order 2. Their exterior product results in a tensor R  of order 4 with components:

. The components obtained by contraction of the second and third indices of R are:

.      .. We can show that this is a 2nd order 2.  

From transformation (1.55), we can write:

contraction

i.e., from a 4th order
to a 2nd order tensor



Tensor Algebra

Sum of Tensors
Consider two tesnors L and T. Their sum (L+T) is such that for every vector a,

with components: 

Interior Product of Two Tensors

(we consider tensors of order 2)

Consider two tesnors L and T. For or every vector a, their products LT and TL  
are given by the equations:

and

The components are:

In matrix form, the matrix of the interior
product is equal to the product of the 
matrices of the two tensors:

and



Tensor Algebra

Interior Product of Two Tensors

Note that (not communicative).

For three tensors , L, T and S, we can write:

and                                                 

(it is associative)

When L= T

TT =T2, TT2 =T3…..

Note also: 

Useful relations of interior product: 

Example 1.5

The first one is easily demonstrated as follows:



Tensor Properties

Transpose of a Tensor:

It is obtained by exchanging two indices.
The transpose of Lij is Lji .

The transpose of the tesnor L is denoted as LT

and 

Also we can easily show that:

Note that: 

Inverse of a Tensor:

For a tesnor with det L ≠ 0, there exist a unique tensor
called inverse tensor and denoted L-1 of L and satisfies:

We can easiliy show that:

For two tensors:



Tensor Properties
Symmetric Tensor:

It is defined when the tensor is equal to its
transpose: 

Or Lij = Lji

Note that a symmetric tensor has 6 
independent components.

Trace of a Tensor:

The trace of a 2nd order tensor L, is the sum (scalar) 
of its diagonal elements and denoted by ‘tr’

For a dyad of vectors a and b, it is their scalar product

Some properties of the trace  (α ∈ R )

antisymmetric Tensor:

A tensor L is said to be antisymmetric if

Or Lij = −Lji

It can be proven that all 2nd tensors can be
uniquely decomposed into the sum of 
symmetric LS and antisymmetric LA tensors: 



Tensor Properties

Deviatoric Tensor:

A tensor L can be decomposed into a spherical
tensor LS and a tensor with zero trace Ld, called
deviatoiric tensor, so that

where

Note that the components of the deviatoric
tensor are not independent.

Orthogonal Tensor:

For a tesnor Q, that satisfies the condition:

for every u and v. 

Using relation
we obtain:

An orthogonal tensor satisfies
Note that since u.v is preserved, the angle between the 
vectors as well as their norms are preserved. 

Note that the matrix of Q is equal to the matrix [C] of a 
rotation of the basis vectors. 



Tensor Properties

Scalar Product of two tensors:

For two tensors S, T of odrer two the following
scalar is defined as scalar product:

It is a double tensor contraction.

The norm of a tensor L is defined as: 

Properties of scalar product:

Example 1.6:

Verify the last identity. Following the definition we obtain:

Example 1.7:
Consider two tensors A, B such that (symmetric)
and                      (antisymmetric). Show that their
scalar product is zero (use the properties of symmetric and
antisymmetric tensors).

ij jiA =A
ij jiB = B−



Dual Vector of a 2nd order tensor

The dual vector components di of a tensot L
are defined by the product:

Explicitly they are:

The dual vector has zero components if L is symmetric:

This is shown as follows. From the definition of the vector
and spliting the tensor in two parts we can write:

The first term in the parentehsis is zero (product of 
symmetric and antisymmetric tensors) and the antisymmetric
part is zero due to symmetry.

For any tensor L (using the definiton) the dual vector depends on
the antisymmetric part:

Further it can be shown that:

( )ij jiL =L



Eigenvalues and Eigenvectors of a tensor

For a tensot L if u is a vector that when L is applied
is transformed into avector parralell to itself:

Then u is an eigenvector of L and λ is the 
corresponding eigenvalue. Conventionally the
eigenvectors are normalized to vectors n
of unit length (unit eigenvector):

Or with

The last equation is called characteristic equation of the 
tesnor L. Its solution gives the eigenvalues and eigenvectors.

For a symmetric tensor the following theorem is
holds for its matrix (from linear algebra):

Theorem: The eigenvalues of a real nxn symmetric matrix 
are all real. The corresponding eigenvectors are orthogonal.

The solution of the characteristic equations results in the 
eigenvalues λ1, λ2, λ3 & corresponding eigenvectors n1, n2, n3 .

Note that
1: If λ1 ≠ λ2 then n1 . n2 = 0 and n1, n2 are orthogonal.
2: If λ1 = λ2 ≠ λ3 we have n1 . n3 = n2 . n3 =0. In such case
directions n1, n2, are chose mutually orthogonal and normal to 
n3 .
3: λ1 = λ2 = λ3 the directions n1, n2, n3 are chosen mutually
orthogonal and without restriction.

( )ij jiL =L



Eigenvalues and Eigenvectors of a tensor

The characteristic equation:

is a third order polynomial:

Its solution gives the eigenvalues and eigenvectors: 

The following three parameters are called invariants 
of the tensor L:

Note that any independent combination of these
invariants results in another invariant.

Example 1.9

The expression

is an invariant of the tensor L.
Use the identity

to modify the expression as follows:



Eigenvalues and Eigenvectors of a tensor

Positive definite tensor

Such a tensor satifies the following relation

It can be shown that the eigenvalues of a positive
Definite tensor are all positive:

For the tensor L with one of its eigenvalue λ and 
and corresponding eigenvector n, we can easily
see that since

Spectral decomposition of a tensor or 
spectral representation of a tensor

For a tensor L with eigenvalues λ1, λ2, λ3, and 
corresponding eigenvectors n1, n2, n3 .
The orthogonal eigenvectors form a basis for the spectral
decompostion writen as follows:

We can show it as follows:

use                     and 

3

1
( ) ( ) ( ) )λ λ⊗ = ⊗ = ⊗ = ⊗∑i i i i i i i i i iL=L n n Ln n n n (n n

(1.65) (1.109)



Square root of a tensor &  Polar decomposition 
Theorem (square root)
For a symmetric ,positiove definite tensor C with
eigenvalues and corresponding eigenvectors nι , 
there is a symmetric positive definite tensor U 
such that:

and denote it as 

These two tensors have the following spectral forms:

λ 2
i

2 =U C  

C   = U

Theorem (polar decomposition)
For a tensor F with with determinant det F >0 there
exist symmetric positive definite tensors U and V
and a rotation (an orthogonal tensor with a positive 
Determinant equal to 1) R such that:

These decompositions are unique and  we have:

and      

Representation is called right decomposition.
Representation is called left decomposition.

F = RU = VR  

T=U F F T=V FF  

F = RU 
F = VR



Functions of a tensor

The function is defined as a scalar funtion
of the tensor T and yield a scalar. When T is symmetric
and the condition:

is satisfied, then is isotropic of T and is
represenetd by:

where the parameters
are the invariants of T. This is also equivalent to:

where λ1, λ2, λ3, are the eirenvalues of T.  
It can be shown that for the isotropic function
its derivative with respct to T is:

Scalar function of a tensorIsotropic tensor function of a symmetric tensor

By definition an tensor isotropic function f, for which
the variable is a 2nd order symmetric tensor T , satisfies
the identity:

for any orthogonal tensor Q . 
For a symmetric tensor L the following relation is true:

Rivlin-Ericksen Theorem
The last expression can be written in the form



Tensor Analysis

For a tensor the derivative with respect to a 
scalar parameter (i.e., time) is a tensor of the same order

In terms of its components, it is given by

For a vector the first and second time derivatives are

and 

Derivatives:Notation:

Scalar field
F(xi, t) F(x1,x2 ,x3 ,t)    

Vector field
vi (xm ,t) : it covers all three components     

v1( x1,x2 ,x3 ,t), v2 (x1,x2 ,x3 ,t), v3 (x1,x2 ,x3 ,t) .

Tensor field
Lij (xm ,t) : it covers all nine components 

L11 (x1,x2 ,x3 ,t), L12 (x1,x2 ,x3 ,t), …., L33 (x1,x2 ,x3 ,t), 



Tensor Analysis
Derivatives

Demonstration of

From the defintion

Derivatives:

The following identites are establied easily



Tensor Analysis
Gradient of a vector field

With a vector field , we associate a tensor, 
called the gradient of      , and denote it           It is a 
tensor of order 2 which, applied to        , gives the 
difference of between               and     . 

We have

With                             (                       )

We obtain

in direction 1

Gradient of a scalar field

Associated with a scalar field is a vector field 
called the gradient of   . 

It is denoted or        and is such that the scalar 
product with gives the difference between the 
values of evaluated  at      and at     .
we obtain

With (                      ))

In Cartesian coordinates we have:



Tensor Analysis
Gradient of a tensor valued tensor function

For a regular, tensor valued, smooth function         of 
a tensor of order 2, the first two terms of a Taylor 
expansion around are:

When                     we have:

Or                                      

The tensor                            is of order 4 and is the 
gradient of             in      .

Gradient of a scalar valued tensor function

For a regular, scalar valued, smooth function         
of a tensor of order 2, the first two terms of a Taylor 
series expansion around are:

Where           is   the remainder of the expansion which 
tends to zero as → 0, as expressed in the relation

The total differential is expressed as follows

Or 

2nd order tensor defined as gradient      of      in 



Tensor Analysis
Curl of a vector field

For a vector field            the curl is defined as a vector:

In index notation it is   

Using the property of the permutation symbol we get 
its three components:

If the curl of the field        is zero, that is, 

The field is called irrotational. 

Divergence of vectors and tensors

Let     be a vector field. The divergence of       is 
the scalar obtained by a contraction:

or 

When the divergence of a vector field is zero, 
that is,                      the field 
is called a solenoidal field.  

For a tensor       we have its divergence              defined
as a vector:

Or   



Tensor Analysis
Laplacian of a vector field

We can also treat a vector function in the same way. 
The divergence of the gradient of a vector is written 
as:

The result of these operations is a vector. We also 
denote the operation as         , that is,

Laplacian of a scalar field

We also encounter second order derivatives in 
expressions of physical quantities in mechanics. 
The divergence of the gradient of a scalar 
function is an example:

which is also the Laplacian of denoted
or          :

When                      the function is said harmonic
known as Laplace’s equation.

When                      where f  is scalar it is called
Poisson’s equation.



Tensor Analysis
Gauss theorem

The Gauss theorem or divergence theorem, written 
as follows for an arbitrary component                     : 

This theorem transforms the volume integral of the
divergence of a property of a continuous medium 
into a surface integral and plays an important role in 
mechanics of continuous media.

Definition of the flux

Consider a body in a 3D space of volume      and surface
:

The flux of a property        through the surface of the 
body is (v is interpreted as the velocity field):

..... ( )jk iT x

.....
.....

jk
i jk

i

T
dv n T ds

xω ∂ω

∂

∂∫ ∫  = 

Surface and volume elements
In Gauss’s theorem



Curvilinear coordinates
Consider a point P with Cartesian coordinate xi .
In a curvilinear coordinate system 
(cylindrical or spherical coordinates), the position 
of the point P is given by the three numbers      that 
represent the coordinate curves 
passing through P that is, by the curves on which two 
of the three coordinates       are constant. 
The curvilinear coordinates can be considered 
as functions of Cartesian coordinates:

If the jacobian: 

is not zero the 
transformation
Is invertible.

Cylindrical coordinates

Spherical coordinates



Curvilinear coordinates
Cylindrical coordinates

Spherical coordinates

All relevant parameters and operators 
are found in:

Appendix A: Cylindrical coordinates
Appendix B: Spherical Coordinates

In the book: Mechanics of Continuous Media
(Botsis and Deville PPUR 2018)
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