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Continuum mechanics review

Experimental Evidence (Fluid)
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We ignore the discrete aspect of matter and we consider that

‘ properties such as density, viscosity, modulus of elasticity, etc.,
assigned to a midpoint continuous are continuous functions

of space variables.




Continuum mechanics review

Experimental Evidence (Solid)
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We ignore the discrete aspect of matter and we consider that

‘ properties such as density, viscosity, modulus of elasticity, etc.,
assigned to a midpoint continuous are continuous functions

of space variables.




Continuum mechanics review-Vector Algebra

In mechanics of continuous media, motion and the associated physical quantities are
described in Euclidean space R3 (physical space) with which a three-dimensional vector
space E3 is associated.

The elements of R3 and E3 are called the points and vectors, respectively.

The scalars, vectors, and tensors that describe the physical quantities are also attached to a
space (typically R?) and form what are called scalar, vector, or tensor fields.



Continuum mechanics review-Vector Algebra

A vector space is defined uniguely from the properties of operations on its elements and assumes
the existence of an arbitrary field (typically the field of real numbers R) whose elements are called
scalars. The vector space E? is then the set of elements denoted u, v, w, . .. such that:

u+vec B3 au € E?

(u+v)+w=u+ (v+w) lu=wu

30€ E? |u+0=u a(bu) = (ab)u (1.1)
d—-ue B3 |u+(—u)=0 (a+b)u = au + bu
u+v=v+u a(u+v) = au + av

foreveryu, v, w € EFand a, b €R.

By providing E3 with a scalar product, to be able to calculate lengths and angles,
it takes the name Euclidean space. The scalar product associates
with every pair of vectors u, v € E3 a scalar denoted u-v with the following properties:

U -v=7v-U

u- (av+ pw) = alu-v)+ Blu - w) (1.2)
u-u >0
foreveryu, v, w € E?and «, S ER. Note: numbers refer to the equations

in the book by Botsis & Deville



Continuum mechanics review-Vector Algebra

The scalar product is consequently an application of E3 x E3 in R that is linear with respect to each of
its arguments. It is also called a positive definite bilinear form (See (1.2) in the previous slide).

The definition of the vector norm u, denoted ”u” is given by the relation:

lul| = Vu-u. (1.3)

The vector u is called a unit vector when ||u|| =1, and two vectors u and v are orthogonal if and only if u.v = 0.

Every vector in E3 can be decomposed uniquely according to a basis formed of three linearly independent vectors of
E3. The choice of a basis is arbitrary but generally one uses the canonical basis (ey—ez’—e;) defined by:

e,,/ej:{l le:J (14)

0 ifi#j, 4,j=123.

The basis is called orthogonal when the basis vectors are not unit vectors but are still orthogonal.




Continuum mechanics review-Vector Algebra

Physical quantities in continuum mechanics

Scalars: Quantities for which only one value can be associated. For example, the mass density of a material. We
denote it p and it has for Sl units kg/m3 or dimensions ML™3 where M is the mass and L a length. This density
is practically constant and, in addition, there is no direction associated with its value.

Vectors: quantities have not only a value but also a direction.

A force of one Newton is that which, applied to a point, gives it an acceleration of 1 m s per kg.

Since this force has a direction, it is a vector. In a given coordinate system, this vector is specified by its components.
Going from one set of axes to another, the vector remains invariant and only the components of the vector

change by a transformation rule.

Tensors: We introduce the concept of a tensor in a simplistic way as follows. Consider, a stress is a force
per unit surface: (a) force is a vector and (b) an element of a surface is also a vector (must specify both
its size and its orientation).

If fdescribes the force vector and s the normal vector of the surface S, then we might think that the

stress T could be expressed by f/s. But, as the division of two vectors is an undefined operation, we get
around the difficulty by saying that given s, we can find f by multiplying s by a new entity Tsuch that: g

This mathematical object is a tensor which yields the stress at a point and is a tensor A4

of order 2. It is associated with two spatial directions and can be represented by a f(s) =Ts
matrix with two indices, each index corresponding to one direction in Euclidean space.

It is thus an entity with nine components.




Continuum mechanics review-Orthogonal Transformation

In the physical Euclidean space R3, let there be a Cartesian orthonormal co- ordinate system (O, e,, e,, e;),
that we denote also as Ox; (i = 1, 2, 3), with origin at O and the unit vectors e, (i = 1, 2, 3) directed along

the axes Ox; (fig. 1.3).

Another system O x; (i = 1, 2, 3) with unit vectors e, defines a Cartesian coordinate system with the same origin O. The
direction cosines of the axes x; with respect to the axes x, denoted by c,» are given by the scalar products of the basis

vectors.

Ty

Cpi = cOs (1), 2;) = e, - €; Lp=1,2,3. (1.6)

Similarly, the direction cosines of the first system with respect to the
T second are given by:

Czlv?f = e, e, = Cip, (1.7)

Two Cartesian coordinate systems
with the same origin



Continuum mechanics review-0Orthogonal Transformation

Let P be a point with coordinates x; in the first system and x; in the second.

From equation (1.6), the coordinates x, are related to those of x; and x;

Two Cartesian

_ / !
) Using equation (1.6) Cpi = COS\X,,T;) = €, * €;
\ coordinate systems g€q (1.6) p ( p ) p
T\
p / 4 ;
e I
e Ty = C1121 + C1222 + €133
d );
Ty = €211 + C22T2 + 2373 (1.8)
g /
T3 = €311 + €322 + €333 .
= 3
e r . .
1 1 Or il =) cju; i=1,2,3. (1.9)
j=1
! ! !
. 1 = C11T7 + Co1Ty + €317
For the inverse —> 1= LRt s
! transformation we have: Tg = C12@y + C22X5 + 3203 (1.10)

!/ / /
. T3 = 1307 + Ca35 + ¢339

3 3
Or |zi=)Y cuah=> da}. (1.11)
j=1 =1




Summation convention

We can suppress the symbol 2 by adopting, from here on, the Einstein summation convention for
repeated indices to write for the coordinates of point P and agree to the following:

When an index appears twice in a product, a sum with respect to that index is implied by taking
successively all its possible values (in this case, i = 1, 2, 3). In this way equations (1.9) and (1.11),

v= ) e i=1,2,3. (1.9)

Zcﬁ Z(’u . (1.11)

are written in the compact form:

T, = CijT; Ti = Cjil) j=1,2,3. (1.12)




Summation convention

Illustrations of summation convention

3

N = Zaijﬂj = 01N + 0;0N2 + 0i3N3
i=1

(the index i is fixed and has a value among 1, 2, 3. It’s called free index.

We sum over the repeated index).

3 3
2 2 2
TijNin; = E E TN = 011N] + 022n5 + 033n3 + (012 + 021)n1N2
J=11i=1

+ (023 + 032)nans + (031 + 013)N3Ng .

(No free index. We sum over the two repeated indices i and j =1, 2, 3)

3
Lii = Z Li; = L11 + Lag + L3 u; designated the set of the 3! quantities
i=1 u,, U,, Uy (3 for space and 1 for the free index).
3 3 . . po .
L. signifies the set of the 32 quantities
A, B.C; = A;BLCi = B Y A;C; = Br(ACy + AyCy + A. C;)‘ Y
" ; " " ; e o e Ly, Ly Lys, Ly, Loy, Loy, Ly, Ly, L
(3 for space and 2 for the free indices).

3
ds® = da? + da3 + da3 = Z dr; dv; = dx; dzx; . L, we have 3° = 1 quantity.

=1




Summation convention and Kronecker delta

lllustrations of summation convention

Note that the index over which we sum is a dummy index;
we can change the notation of this index without changing the significance of the sum:

OijNy; = 0N = 0411

M ju;v 5wy

]\[ﬂkuj UV, W = ﬂ[?kj U VW,

Very important in operations with complex equations

A dummy index does not appear
more than twice in a product.
Using this property and

/

T, = CiiT; Ti = Cji%;  (1.12)
@ 1(1)
we can wrirte: Lj = Cqj (L‘;
(3)
from which: :Ci = C;jCqj ZC;

CijCqj = (Sféq . (115)
1 ifi=
oij_{o i) (1.14)

1)

We can introduce the Kronecker delta to reflect such a property.

1)

The coefficients in the last equations should be equal to one
when i=¢g and 0 for i not g. This is also true for the other equation.




Summation convention, Kronecker delta

Orthogonality conditions: From the Kronecker delta The Kronecker delta can be used to change

the index of a component:

S B A (very useful property)
O”_{O it (1.14)
/ / Lix = 0ijLjk,
and T, = C;jiCq; .
! J74I7g A;BiC; = 0,;A:BirC},
we can wrirte the orthogonality condition: ou; o dug
— = Uj; = O)j——— = Ok Uk ;
_ Ox; ox;
CijCqj = ()fi_q 92 0%,
: A = Uigk = 0ji . = 0k -
The components Ci;j form an orthogonal matrix [(V] such that: dx ;0w dx 0wy,
[O} [C}_l = [O} [C}T = m ; (1.16) Note also the following relations usefull in
_ deriving relations in mechanics:
with
i gy He_ss
det [C} =€ (82 X 83)5 (1.17) ()ﬂfj Y GA., — Y%
J

det [C} — —+1((+) indicates a direct rotation and (-) a reflection)




Scalars

Recall: In mechanics of continuous media, we work with scalars, vectors, and tensors that describe the physical
quantities that are also attached to a space (typically R3) and form what are called scalar, vector, or tensor fields.
What is important in the context of continuous media is how we can describe these quantities in different

coordinate systems.
Consider a point P in a continuous medium and a real value continuous function F'(P) at P.

If the value F' (P) does not depend on the coordinate system, then F'is called a scalar function, or scalar,
or a tensor of order 0. This is the case, for example, for temperature, pressure, kinetic energy, etc.

Suppose that P has coordinates x; and if /' (P) has a value f (x,),

© Two Cgrtesmn the change of coordinate systems:
coordinate systems

\
r o\
Th
2\ p
\

. L for the scalar F (P) leads to

L — lf"jl'.f'j

5 ” F(P) = f(x;) = f(ejia}) = f'(2))

0 >

. Note that the values remains the same but the
| form of the function can varie in the new coordinate system.

Ty I




Vectors

Let v = P Q be a vector having its origin at point P and its extremity at point Q (fig. 1.4). This vector has a direction
and three components v.. The vector itself is independent of the coordinate system.

T,

T, =cir;  and

€T, = Cj?;ilfl- . (119)

J

Here x, y; are the coordinates of the points P and Q in the first coordinate system and
x;, y; in the second. The components of v in the two systems are written as:

Vi =Yi =i (1.19) /

-U. p—
! / / ‘ )
v Uy = Yy — & ?

S »
W
V. Ve
4 .
4 s
7 7
s ™ 2
—_ 7
7 ,
N "U
AN
AN
N
AN
N
.

xr

* Vector in two Cartesian

coordinate systems

il.ZOi, il.Zli l

/ /
Yi — 5 = Cij(Y; — Tj) = Cijvj (1.20)

In a Cartesian coordinate system the C;; are Independent of the coordinates of P.

(1.19) O,

—— = Cyj
B 5 Y

f - 3ol
ox; | 0x; _ ()ﬂfj
Oz o' Ox

) !
J

=cj; o (1.21)

AP [
v = 0z; V. or v = oz, V.
1T c 7 I |
ox ox!
(1.22)

The object v, characterized by the three components v;in a
Cartesian coordinate system, is a vector or a tensor of order 1 if
its components are transformed according to this rule during a
coordinate system change that is an orthogonal transformation
satisfying (1.16).




Vectors

Using index notation we can express the algebra of vectors and their components:

With a being a scalar we can write, using (1.22):

(av;) = ¢ij(av;) = 7 (av;)

the vector addition results in a vector with components:

W; = Ui + V;

or in vector notation : w=u-+"7v

With||u||and||v]|| being the norms of the
two vectors we have :

b= [[ul] [v] cos o
f) is the angle between the two vectors).

For a single vector: V;V; = ||'U||2

Scalar product of two vectors b:
In symbolic form : b=u-v=7v- -u

In index form: b = U; Uy = ULV + U2V + U3V3

The scalar product of two vectors is independent of
an orthogonal change of coordinates.

Using (1.20), we have:

__ _ / AN W
Vi = Yi — Xj = ijg_(yj — CCj) = CjiV;

— .. — .l ooy !’/
b= uv; = CjiU;CriVy, = CjiChill; V),

! 7 !
C)Jkuj?,k, uj'U:]




Permutation symbol and vector product

The permutation symbol is defined as:

—1 if 77k is an odd permutation of 123

1 if 15k is an even permutation of 123
Eijk =
0 all other cases

or

(i — ) — k)(k —1)

' 7N

Sijk = €jki = Skij

3 2
Sijk = —&jik NS

1
Eijk = 5




Permutation symbol and vector product

With the Kronecker symbol

- 1 ifi=7y — —
0jj = { 0 ifi# j ‘ EijkEilm = ()jl()k‘-'m - Oj:rn-()k;l :

and the permutation symbol we have
an important relation used to easily demonstrate vector identities

and express vector products in index form.

In an orthonormal basis of R3, the vector product of two vectors w = u X v,
sometimes denoted u A v, is defined by the equality:

W; = iUV

The norm of the vector is given by the equality
(with @ angle between u and v):

sin @

lwl| = fluf{lv




Permutation symbol and vector product

Example 1.1

The vector product w x v generates a vector w perpendicular to the plane
of the two vectors, and the three vectors u, v, w form a direct system. It
can be shown that w is orthogonal to v since v - w is zero.

ViW; = Vi€ jkU;VE = €45V UEU;
1

5 (€ijkVivKY; + EkjitkVIY;)

1
2 (gijkvzvkuj + Ezgkvzvku_j)
1

5 (eijkvivkuj — 5ijkvwkuj) 0.



Permutation symbol and vector product

Example 1.2: Verify the following identity:
(@axb) - (exd)=(a-c)(b-d)—(a-d)(b-c)(1.36)

We use index notation algebra to verify the identity (1.36). The term on
the left £ is written as

L=(axb) (cxd)=c¢ijrajbrciimcidm .
With (1.30), we obtain

'8 = (a0 — Q) DTG
— jla’jclékmbkdm — 5jmajdm(5kgbkq .

Using the properties of the Kronecker delta d;;, we set [ = j and m = k in
the first term and m = 7 and [ = k£ in the second. Then

L= ajcjbkdk — a,jdjbkck g

The right-hand term of this relation is none other than the index notation
representation of the right-hand term of (1.36).

€ijk€ilm = 0510km

— fjj?nfjki

(1.30)




Tensor Algebra: definition of a tensor

Definition of a tensor of order 2:

Let E3 be the Euclidean vector space of vectors associated with R3, and L a linear mapping on E3
that transforms a vector to another:

L - EB — ES such that: 94 — Lu

If L transforms the two arbitrary vectors as Luy = vy Lus = vy

and has the properties L(ul 4 u2> _ Lu1 e Lu2 (1.38)
L((}.’ul) = Q-fLul ,

where u, and u, are two arbitrary vectors of E3 and a € R, then we say that L is a linear transformation.

It is also a tensor of order 2, or simply, a tensor.

The unit tensor I and the zero tensor O are defined by the relations u = Iu and 0 = Ou.



Tensor Algebra: definition of a second order tensor

For a vector u, the vector v is given by: v=Lu = Lu@_ei — u?;Le?; (1.39)
If we express the components of v as: v, = €; - (1.40)
) ; =€, (u;Le;) =uj;e; - Le; (141)

(1.42)

The components of the tensor are: L.?;j =e; - Lej

or Ww; = Ljju (a3

matrix associated L1 Lia Lis
which is the transformation of the two vectors withthetensor  [L] = | Loy Loa Loy
in index form. In a matrix from, it is. L3 L3z Lgs
V1 L1 Li» Lis Uy determinant associated
vo | = | L21 Loa Log U2 with the tensor L11 Lo
v L L L3 U
’ e s ’ det L = det[L] = det | Loy Loo
From (1.42) we see that the columns L31  Lso
of the matrix are the components of vectors Le?;

and depend on the coordinate system. However,
the operator does not depend on the base vector.




Tensor Algebra: Dyadic (or tensor) product of two vectors

The tensor product or dyadic product a @ b of two vectors a and b is defined as the tensor which,

for any vector v defines the following transformation :
(a®@b)v=(b-v)a=a(b-v) (1.48)

For every vector v and w and for a, f € R, we have

(a®@b)(av + pw) = (b (av + fw))a
= (a(b-v)+ 3(b-w))a
= a(b-v)a+ 3(b-w)a
= a(a ® b)v + fla ® b)w

The definition of the dyadic product and the last relation
demonstrates that the product is a tensor. Its components are:

1.42
H (CL X b)?] =e,; - (a X b)e] —

=e; - ((b-ej)a) =e; - (ab;) = (e; - a)b; = ab;

The matrix form of a dyadic product is:

a® b

ai

as

a1b1
a2b1
asbq

(b

a1b2
a9bs
a3bs

by b3 )

@103
agbg
asbs




Tensor Algebra: Dyadic (or tensor) product of two vectors

For two vectors u and v,

(u@v) # (v© u)

Note that :

(e; @ej)u=(e; -u)e;, =u;e;
With the help of (1.43) we obtain:

(1.43)
s v = v,e; = Lu= L;ju;e; = L;j(e; ®e;)u

and L = Li(ei@e))

Note two important relations:

I — 5@'(&5 ®€j)
a®Rb = aibj(ei X ej)




Tensor Algebra: transformation rule for Cartesian tensor

The representation in the Cartesian coordinate system X; of the linear operator L,
which is invariant, is given by its components L;; (1.42) L” — €, LE’,J

: ) / / /
In the coordinate system x’; the components of are expressed as L,.i,]- — €, - Lej

We can easily evaluate the relation between the components L;; and L’ij. Using (1.20),

i = Y — Xy = Cij (y} m:)) = C45U;

/ / / /
Lz’j = €; - Le’. becomes L;. = (C@ke}f_) ' L(Cﬂeg) = CikCj1€L - Leg = C?'_}GngLM

J L]
Recalling, %% — ¢ or; _ (1.21)
ecalling, —— — Ci4 - — .
5 dg:j E oaf, — !
xh Or Ox.. Ox
L=,  or  LL=Z-2"l[. (153
dzz“A dx; : ox! d:r:j

In matrix notation, equation (1.52) is written as: [L,] — [C] [L} [C]T

(1.52)



Tensor Algebra: transformation rule for Cartesian tensor

Definition of second order tensor: a matrix [ L] with nine components corresponds to a 2"

order tensor if its components are transformed according to (1.53):

Oz O0x', Ox. Ox
L:jj = 9 - ()—J kil or Lg,j = d—f 5—5LM [(1.53) <= These transformation rules guarantee
L O Ly 0L the invariance of L with respect to
during a coordinate change that obeys (1.20): the choice of coordinates.

/ / /
v; =Y — ;= Cij(y; — x5) = ¢ijv; (1.20)
and that is an orthogonal transformation according to (1.16):

-

—1
C-zlkck_j = CikCjk = ()fg_j (1.16)

By generalizing these transformation rules, we can define a tensor of order n.
By definition, 7 is a tensor of order n if, during a coordinate transformation,

its components aretransformed according to the rule:

, oz’ ox! ox! =
T =2 T (1.55)
1119+ 1n 83331 833;2 8(13jn J1J2 " In .

For a tensor of order 1 (vector)
and order 2 we easily see:

9,7 3t Al
! _ Juay O]

!
oF L.. = — - -
! drp Oy

o j tJ

L




Tensor Algebra

Important rules of nt" order tensors

Multiplication by a Scalar: the multiplication of a tensor of order n by a scalar is carried out
by multiplying each component of the tensor by the scalar. The result is a tensor of order n.

Linear Combination: the linear combination of two tensors of order n is by linear combination of the corresponding
components. A tensor of the same order is obtained.

Zero Tensor: it is the tensor for which all the components are equal to zero.

Equivalent Tensors: when the components of two tensors of the same order are equal term by term in a
coordinate system, then they are equal in every other system; the tensors are equivalent.
Consequently, if a tensor relation is verified in one coordinate system, it is true in all coordinate systems.

Exterior Product of Tensors: Consider A, .., and B;, .., as the respective components of a tensor of order
n and a tensor of order m in a coordinate system. The 3™™ quantities obtained by:

Cit it jm =4t in Bj1 ...jn form a tensor C of order n + m.

An example, is the dyadic product of two vectors (i.e. tensors of order 1) yields a tensor of order 2.



Tensor Algebra

Important rules of n order tensors

Tensor Contraction: Consider a tensor 4 of order n whose components in a coordinate system are 4;; ..,

The contraction consists of setting equal two indices of the tensor, i.e. the j and the k™ with j and k <=, and
summing over these indices (j, k=1, 2, 3) to form a tensor of order n-2 thus having 3" components.

We say that this tensor is obtained by contraction of the indices j and k.

Example, L;; is the only contraction possible of L;; which is a scalar (tensor of order 0).

Consider two tensors 8 and T of order 2. Their exterior product results in a tensor ® of order 4 with components:

R?;jk[ = S@_j Tkl . The components obtained by contraction of the second and third indices of R are:

R-g;mm[ — S@ime,z .. We can show that this is a 2"9 order 2.

From transformation (1.55), we can write:

contraction B
U ikl = CipCjiqClr Cl.b pqrs — Lle[ CipCmqCmr Clequrs
CijCqj = Oig ox. 0 i
: / o N _ X, ﬂfl i.e., from a 4t order
Rz’mml — CipCis OQT‘RPQ'F"-S — C’iPClSR’P?‘” — Rpr ‘TS| to a 2" order tensor
Ox, 0,




Tensor Algebra

(we consider tensors of order 2)

Sum of Tensors

Consider two tesnors L and T. Their sum (L+T) is such that for every vector a,

(T'+ L)a =Ta+ La

with components:

(T -+ L)?;j = €; - (T —+ L)ej = €; - Tej —+ €, - Lej ‘ (T -+ L)ij = T,i_j + L’i-j

Interior Product of Two Tensors

Consider two tesnors L and T. For or every vector a, their products LT and TL
are given by the equations:

(LT)a = L(Ta) and (T'L)a = T(La)

The componentsare: (LT);; = e; - (LT)e; =e; - L(Te,)

= € - LT’mj €m = Tm,j e; - Le,,

In matrix form, the matrix of the interior
product is equal to the product of the
matrices of the two tensors:

(LT)| = [L][T]
and

(TL)] = [T][L]




Tensor Algebra

Interior Product of Two Tensors

Useful relations of interior product:

La®b)=(La)®b
Note that [T’ 7£ T’ I, (not communicative). (u@v)(a@b)= (v a)u@b=u®bv-a)

For three tensors , L, T and S, we can write:

(L(ST))GL — (L(ST)CL) — L(S(Ta)) Example 1.5
and (LS) (Ta,) — L (S(Ta,)) The first one is easily demonstrated as follows:
. .. (L(a’ ® b)) o Lim (a* X b)mj — L'z]fm,ambj
me) [ (ST = (LS)T (itisassociative) v
(5T) = (L5) ~ (La).b, = ((La) ©b),,
When L=T

TT:TZ) TTZ =T3.....
Note also: det (ST) =det S detT’




Tensor Properties

Transpose of a Tensor: Inverse of a Tensor:

It is obtained by exchanging two indices. For a tesnor with det L # 0, there exist a unique tensor
The transpose of L;is L ; . called inverse tensor and denoted L/ of L and satisfies:
The transpose of the tesnor L is denoted as L7 LL_1 — L_l L =1

and (LT)Z-_j = Lj; We can easiliy show that:
m) (LS)" = sTL” (L)' =L

Also we can easily show that: (Q;L)—l — é L}

u-L'v=Lu-v=v- Lu det(L—l);(detL)‘1

Note that: For two tensors:

T
det L- = det L (ST)_l _p-lg-1




Tensor Properties

Symmetric Tensor:

It is defined when the tensor is equal to its
transpose:

L=1L" or L;=L,

Note that a symmetric tensor has 6
independent components.

antisymmetric Tensor:

A tensor L is said to be antisymmetric if

L=-L" or L,=-1L,

Jl

It can be proven that all 29 tensors can be
uniquely decomposed into the sum of

symmetric LS and antisymmetric LA tensors:

7S A

Trace of a Tensor:

The trace of a 2" order tensor L, is the sum (scalar)
of its diagonal elements and denoted by ‘tr’

tr (L) = {r (L?jj (8.?; 029 ej)) — "
= L;j tr(e; @ e;) = L;j0;; = Ly
For a dyad of vectors a and b, it is their scalar product

tr(a®@b)=a-b

Some properties of the trace (o € R)
tr L = tr LT
tr(S+T)=trS+trT
tr (aL) =« tr L
tr(AL) =tr(LA),




Tensor Properties

Deviatoric Tensor: Orthogonal Tensor:
A tensor L can be decomposed into a spherical For a tesnor Q, that satisfies the condition:
tensor LS and a tensor with zero trace L¢, called
deviatoiric tensor, so that Qu-Qv =u-v for every u and v.
L=L°+L"
+ Using relation w-L'v=Lu-v=v-Lu
where we obtain:
s 1 . T
Lf:} — gL,{k‘O?j u - Q Qv — U - v
1
d , N
L 7T .. _ _ 4r .. o T
Lz.j L’z-j 3 1 (L) O’U IZ> An orthogonal tensor satisfies Q Q =1
_ ' Note that since u.v is preserved, the angle between the
Note that the components of the deviatoric vectors as well as their norms ||©||. ||V are preserved.

tensor are not independent.
Note that the matrix of Q is equal to the matrix [C] of a

rotation of the basis vectors.



Tensor Properties

Scalar Product of two tensors:

For two tensors .S, T of odrer two the following
scalar is defined as scalar product:

a = S?jjTij = S:T

It is @ double tensor contraction.

The norm of a tensor L is defined as:

|IL|| = (L: L)"/? = (LijLij)"? > 0
Properties of scalar product:
L:(ST)=(S"L): T=(LT"):S
(u®@v):(a®b)=(u-a)(v-b)

L:(a®b)=a-Lb=(a®b): L.

\ 4

Example 1.6:

Verify the last identity. Following the definition we obtain:
(L:(a®b)) = Lij(a®b)i; =
— L@jaﬂgbj = aﬂgL?;jb' = ((1 . Lb)

Example 1.7:

Consider two tensors 4, B such that Al.j ZAJ.Z. (symmetric)
and Bl.j= — le. (antisymmetric). Show that their

scalar product is zero (use the properties of symmetric and
antisymmetric tensors).

1
(A: B) = Ai;Bij = 5 (4i; Bij + Aij Bij)
1 J 1
2 (A%JBU Aiiji): 5 (Aasz,j — AJLBLJ)
1
= 5 (A Bij — AijBij) =0




Dual Vector of a 2"9 order tensor

The dual vector components d; of a tensot L The dual vector has zero components if L is symmetric:
are defined by the product: _
(Lz'j_Lﬂ)
1 1 This is shown as follows. From the definition of the vector
di = — E-L'k:ijk = ——= Eijijk . . .
2 2 and spliting the tensor in two parts we can write:
1 S A
Explicitly they are: d; = 9 (E'ijk[‘jk + Ei-ﬂ'k‘ij)
The first term in the parentehsis is zero (product of
dy = —~ (c193L93 + c139L39) = — = (Log — L3s) symrTwetrlc and antisymmetric tensors) and the antisymmetric
2 2 part is zero due to symmetry.
1 1
do = ——(€231L31 +€213L13) = —= (L31 — L3
2 ( ) 2 ( ) For any tensor L (using the definiton) the dual vector depends on
1 1 : : .
dy = -5 (e312L12 + 2391 Lot) = -5 (Lio — Loy) the antisymmetric part:
di — _l €3J}bLAk A
2 s dy = —Lag
_ A
Further it can be shown that:—— dQ _ _L31
ds = — L%




Eigenvalues and Eigenvectors of a tensor

is transformed into avector parralell to itself:
Lu = \u

Then u is an eigenvector of L and A is the
corresponding eigenvalue. Conventionally the
eigenvectors are normalized to vectors n

of unit length (unit eigenvector):

mm In = \n=)\n
or (L-X)n=0 with n-n=1

n=n;e;

(Lij —Adij)n; =0 njn; =1

=22 det([L] — A1)

For a tensot L if u is a vector that when L is applied

The last equation is called characteristic equation of the
tesnor L. Its solution gives the eigenvalues and eigenvectors.

For a symmetric tensor (Ll.j ZLJ.I.) the following theorem is
holds for its matrix (from linear algebra):

Theorem: The eigenvalues of a real nxn symmetric matrix
are all real. The corresponding eigenvectors are orthogonal.

The solution of the characteristic equations results in the
eigenvalues A, A,, A; & corresponding eigenvectors n,, n,, n; .

Note that

1: If A, # A, then n,.n,=0 and n,, n, are orthogonal.

2:1f A, =\, #A; we haven,. ny=n,. n;=0. In such case
directions n,, n,, are chose mutually orthogonal and normal to
n;.

3: A; = A, = A, the directions n,, n,, n, are chosen mutually
orthogonal and without restriction.




Eigenvalues and Eigenvectors of a tensor

The characteristic equation:
(Lg’_j — /\(5”)nj =0
is a third order polynomial:
N — I (D)N? + I (L)\ — I3(L) =0
Its solution gives the eigenvalues and eigenvectors:

The following three parameters are called invariants
of the tensor L:

I1 (L) = L.;;@'_ —trL

Lll L12 L22 L23 Lll L13
Ir(L) =
>(L) | Loy Loo + | Lss  L3s H | L3y Las
1
=3 (Li;Ljj — LijLji)
1 f 1 : ‘
=5 ((tr L)* —tr (LL)) = 2 ((tr L) —tr (L?))

Is(L) = ¢ijrLitLjaLys = det L.

Note that any independent combination of these
invariants results in another invariant.

Example 1.9

The expression (] — %(EeijkggjstLjSLk:t

is an invariant of the tensor L.
Use the identity

Eijik&ilm = Ojl()k:m — ()jm-()ktl :

to modify the expression as follows:

20 = eijkgistLstk:t — (53'.95kt — 5jt5ks) Lstk‘-t

— 5jSLj35kth:t — 5thjs5kst-t

— ijLk.k — LtSLSt — ij[/k:k — LtSLtS -



Eigenvalues and Eigenvectors of a tensor

Positive definite tensor

Spectral decomposition of a tensor or
spectral representation of a tensor

Such a tensor satifies the following relation

Yo € E3j v-Lv >0 For a tensor L with eigenvalues A, A, A5, and
corresponding eigenvectors n,, n,, n, .

The orthogonal eigenvectors form a basis for the spectral
decompostion writen as follows:

3
I — Z i @m;
i=1

It can be shown that the eigenvalues of a positive
Definite tensor are all positive:

For the tensor L with one of its eigenvalue A and
and corresponding eigenvector n, we can easily
see that since

In=n = n-In=)\>0

We can show it as follows:

use L = LI and I = n; ®n;

3
L=L(n,®n;)=(Ln;)On, =(4Ln,)On; = Zﬁ“i(ni ®n,)
1

Lia®b)=(La)®b Ln = An
(1.65) (1.109)




Square root of a tensor & Polar decomposition

Theorem (square root)

For a symmetric ,positiove definite tensor C with
eigenvalues ],iz and corresponding eigenvectors n,,
there is a symmetric positive definite tensor U
such that:

U =C
and denote it as \/E =U

These two tensors have the following spectral forms:
3
C = Z \in; @ n,
i=1

3
U = Z Aim,;, Qmn;
1=1

Theorem (polar decomposition)

For a tensor ' with with determinant det F >0 there
exist symmetric positive definite tensors U and V
and a rotation (an orthogonal tensor with a positive
Determinant equal to 1) R such that:

F=RU=VR

These decompositions are unigue and we have:

U=~F'F and V=+FF'

Representation JF = RU is called right decomposition.
Representation JF = J/R is called left decomposition.



Functions of a tensor

Isotropic tensor function of a symmetric tensor

By definition an tensor isotropic function_f, for which

the variable is a 2" order symmetric tensor T, satisfies
the identity:

Qf (1)Q" = £(QTQ")

for any orthogonal tensor Q.
For a symmetric tensor L the following relation is true:

L=f(T)

Rivlin-Ericksen Theorem

The last expression can be written in the form

L = o (I (T), Iy(T), I3(T)) I 4 @1 (I.(T). Ir(T). I3(T))T
+ o (I(T), L(T), I;(T)) T,

wi (1= 0, 1, 2) are scalar functions
of the invariants of T

Scalar function of a tensor

The function W(T') is defined as a scalar funtion

of the tensor T and yield a scalar. When T is symmetric
and the condition:

W(T) =W(QTQ")

is satisfied, then Y(T) is isotropic of T'and is
represenetd by:

W(T) = &(L(T). L,(T). L(T))
where the parameters [ (T"). [o(T"), I5(T)

are the invariants of 7. This is also equivalent to:

where A, A,, A5, are the eirenvalues of 7.
It can be shown that for the isotropic function W(T)
its derivative with respct to T is:

S oW
AN,

oW

oT £
=1

n,; (039) n;




Tensor Analysis

Notation:

Scalar field

F(x, t) ) F(x,X,,X;,1)

Vector field
U; (x,,,1) : it covers all three components

U,(x,x,,x3,0), U, (X,,X,,X3,1), U, (x,x,,%3,1) .

Tensor field
Lij (x,,,?) : it covers all nine components

L (xpxy,x5,0), L5 (x,x,,X%5,8), ooy Lyz (X,,%,5,X35,0),

Derivatives:

Foratensor I = L(t) the derivative with respect to a
scalar parameter (i.e., time) is a tensor of the same order

: dL _ L(t+ At) — L(t)
L=—= lim
dt  At—0 At
In terms of its components, it is given by
: dl;;(t :
L = #() €; @ Efj E— L.ije.i @ e.j

For a vector U(f) the first and second time derivatives are

dv . . v ..
E — D = .t__,_i(f)e_i and W = v = -l_?.j(t)ei




Tensor Analysis

Derivatives:

The following identites are establied easily

d du  dv
o EY =ty
d (u®@wv) = d_u KU+ u® d—
dt dt dt
d dlL.  dT
— (L+T)= -+
dt ( ) dt dt
d B do(t) | dL
d dL dT
LT)= —T+ L—
dt ( ) = dt dt
d dL da

(17 - (‘fi’)T

Derivatives
d dL da

i — (La) = — L
Demonstration of =~ — (La) a+L—
From the defintion L = i _ lim L{t+ At) - L{?)

dt At—0 At

d (La) = lim L(t+ At)a(t + At) — L(t)a(t)
dt At —0 At

= Jlim é (L(t + At)a(t + At) — L(t)a(t)

+ L(ta(t + At) — L(t)a(t + At))

(L(t + At) — L(t))a(t + At)

= lim

At — 0 At
L(t t+At) —alt
+ lim ()(a( + At) — al ))
At—0 At
dL da
+ L=
dt dt




Tensor Analysis

Gradient of a scalar field

Associated with a scalar field F'(x) is a vector field
called the gradient of F'.

product with da gives the difference between the
values of [ evaluated at & + da andat =
we obtain

dF = F(x +dx) — F(x) =V F -dx.
With e =dz/dr (dx = ||dz|))

dF
L in direction e

In Cartesian coordinates we have:

It is denoted V ' or grad F' and is such that the scala

OF OF OF OF
VF——el —62 — €3 —

()J.“l ()Iz ()Ig ()—J.“l

€;

Gradient of a vector field

With a vector field ’U(ili') we associate a tensor,
called the gradient of v, and denote it Vv Itis a
tensor of order 2 which, applied to d., gives the
difference of U between « + dx and .

We have dv = v(x 4 dx) — v(x) = (Vo) dx

With € = dx/dx (dx = ||dx| )
dv

We obtain (d) = (Vwv)e
X in direction e

du Ov
in direction 1 (d_) e -V
L /Jin direction e; 1

o

(Vw);; =e; - (Vv)e, =€y -

a'l.?.i_
(V’U)a — A

—> j Dz

Jv 0 Jvq

= e v) = —




Tensor Analysis

Gradient of a scalar valued tensor function

For a regular, scalar valued, smooth function W(T')
of a tensor I of order 2, the first two terms of a Taylor
series expansion around I’ are:

W(T + dT) = W(T) + dW(T) + o(dT)

Where o(dT’) the remainder of the expansion which
tends to zero as dI' = 0, as expressed in the relation

L o(dT)
T =0 ||dT

The total differential is expressed as follows

=0

i o T
owr) = 200 = (2 o)
_|IVT)

214 order tensor defined as gradient W(T') in T

Gradient of a tensor valued tensor function

For a regular, tensor valued, smooth function S(T)
a tensor T' of order 2, the first two terms of a Taylor
expansion around 1’ are:

S(T +dT) = S(T) + dS(T) + o(dT)

When dI' — 0. we have:

0S(T)
dS(T) = — - dT .
() JoT
dS;
Or dSafj— ()T:!dT”

The tensor JS(T)/IT is of order 4 and is the
gradient of S(T")in T .




Tensor Analysis

Divergence of vectors and tensors

Let V() be a vector field. The divergence of v(x) is
the scalar obtained by a contraction:

Ov; v,
divv=—"=tr(Vv) o V-v-= f)t%
When the divergence of a vector field 'v(m) is zero,
thatis, div v = 0/the field V()
is called a solenoidal field.

For a tensor L' we have its divergence div L defined
as a vector:

. OL;:
(divL); = ()I; =Lijj or
OL.;;. 0L}
div L = ar; (e; @ep)e; = (‘);1?; (e - e;) e
= ——0pie; = —>€;.

Curl of a vector field

For a vector field ¥() the curl is defined as a vector:

curl v =V x v

duy,
Sijk
Ox j

Using the property of the permutation symbol we get
its three components:

In index notation itis (curl v); =

(curl v); — Jvy  Ovy
curlv); = 97s  Ors
Jv; dv:
(curlv)y = Ori — Ori
v Ov-
(curlw); = 01’21 — 01’;

If the curl of the field ’U(iB) is zero, that is,
Vxv=0

The field is called irrotational.




Tensor Analysis

Laplacian of a scalar field Laplacian of a vector field
We also encounter second order derivatives in We can also treat a vector function in the same way.
expressions of physical quantities in mechanics. The divergence of the gradient of a vector is written
The divergence of the gradient of a scalar as:
function is an example: 0 .
P —— or V. (Vo) or div(Vwv)
O°F dw;0x;

or V- (VF) or div (grad F)

OO, The result of these operations is a vector. We also
which is also the Laplacian of F denoted V2F denote the operation as V2, that is,
or AF':

} ) . . V. (Vo) = Viv.
2F  2F  9PF  OF (Vo) v

- - — P _’_ - P _’_ e P
(‘)I@(‘)I@ i’):l?lz (’);’I?Qz dI:32

When V2 F' = () the function is said harmonic
known as Laplace’s equation.

When V- F = f where f is scalar it is called
Poisson’s equation.




Tensor Analysis

Definition of the flux Gauss theorem

Consider a body in a 3D space of volume w and surface| | The Gauss theorem or divergence theorem, written
Ow as follows for an arbitrary component T, (x;) :

€y

This theorem transforms the volume integral of the
o divergence of a property of a continuous medium

e T

; into a surface integral and plays an important role in
e- . . .
3 Surface and volume elements | mechanics of continuous media.

In Gauss’s theorem

Ly

The flux of a property () through the surface of the
body is (v is interpreted as the velocity field):

/ Quin; ds or / Q(v-n)ds
Ow Ow




Curvilinear coordinates

Consider a point P with Cartesian coordinate x; .
In a curvilinear coordinate system /;
(cylindrical or spherical coordinates), the position

represent the coordinate curves

of the point P is given by the three numbers /; that

passing through P that is, by the curves on which two
of the three coordinates /; are constant.
The curvilinear coordinates can be considered

as functions of Cartesian coordinates:

Ly

= H?;(;I‘-jJ

If the jacobian:

J = det(00; /0x;)

5 is not zero the

transformation
Is invertible.

Cylindrical coordinates

Spherical coordinates

x

- 2
O =r =/ + 22
_1 T
O =6 = tan~ ! —=
i

93— . — I3

r1 = rcost
ro = rsimf
T3 = z.

dV =rdrdbfdz.

01 =-r=\/;r?—l—;r§+;r§

2 2
1V x7 + x5
O =0 =tan 1 X1 "2
&3
1 L2

T
r1 = rsinfcosy

Tro = rsinfsin @
T3 =rcosh.

dV = r?sinf dr df de




Curvilinear coordinates

Cylindrical coordinates

T,

1 = rcost
To = rsinf
T3 = z.

dV = rdrdfdz.

61 :-r:\/a‘?—l—;rng;rg

/2 2
Ty + T
Op = =tan !t XL "2
xTrs
—1 T2
3 = o =tan~! =,
I
r1 = rsinfcos e
ro = rsinfsin ¢
T3 =rcost.

dV = r?sinf dr df de

All relevant parameters and operators
are found in:

Appendix A: Cylindrical coordinates
Appendix B: Spherical Coordinates

In the book: Mechanics of Continuous Media
(Botsis and Deville PPUR 2018)
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